Логарифмы и их свойства примеры с решением. Натуральный логарифм, функция ln x

Содержание
  1. Алгебра – 11 класс. Натуральный логарифм
  2. Свойства функции $y=\ln{x}$
  3. Задачи на натуральный логарифм для самостоятельного решения
  4. Логарифмы и логарифмические уравнения
  5. Логарифм — что это
  6. Логарифмическая функция и ее график
  7. Свойства логарифмов
  8. История логарифмов
  9. Вычисления Непера и Бригса
  10. Где используются логарифмы
  11. Решение логарифмических уравнений
  12. Задание 1
  13. Задание 2
  14. Задание 3
  15. Задание 4
  16. Задание 5
  17. Задание 6
  18. Задание 7
  19. Задание 8
  20. Формулы логарифмов: примеры решения перехода к новому основанию натурального логарифма и таблица или шпаргалка для этого в 10 классе
  21. Формулы логарифмов. Логарифмы примеры решения
  22. Примеры решения логарифмов на основании формул
  23. Логарифм: что это? Все формулы. Простейшие уравнения и неравенства
  24. Логарифмы: правила, основные свойства и формулы :
  25. Что такое логарифм простыми словами
  26. Что такое логарифм и как его посчитать
  27. Логарифмы со специальным обозначением
  28. Десятичный логарифм
  29. Натуральный логарифм
  30. Основные свойства логарифмов
  31. Логарифмический ноль и логарифмическая единица
  32. Основное логарифмическое тождество
  33. Сумма логарифмов. Разница логарифмов
  34. Вынесение показателя степени из логарифма
  35. Переход к новому основанию
  36. 10 примеров логарифмов с решением
  37. Логарифмы: примеры и решения
  38. Определение в математике
  39. Разновидности логарифмов
  40. Правила и некоторые ограничения
  41. Как решать логарифмы?
  42. Уравнения и неравенства
  43. Основные теоремы о логарифмах
  44. Примеры задач и неравенств
  45. Как использовать формулы логарифмов: с примерами и решениями
  46. Задания из ЕГЭ
  47. Логарифм и его свойства. Как решать логарифмы
  48. Как посчитать логарифм
  49. Десятичный логарифм
  50. Натуральный логарифм

Алгебра – 11 класс. Натуральный логарифм

Логарифмы и их свойства примеры с решением. Натуральный логарифм, функция ln x
Ребята, на прошлом уроке мы с вами узнали новое, особенное число – е. Сегодня мы продолжим работать с этим числом. Мы с вами изучили логарифмы и знаем, что в основании логарифма может стоять множество чисел, которые больше 0. Сегодня мы также рассмотрим логарифм, в основании которого стоит число е.

Такой логарифм принято называть натуральным логарифмом. У него есть собственная запись: $\ln{n}$ – натуральный логарифм. Такая запись эквивалентна записи: $\log_e{n}=\ln{n}$.Показательные и логарифмические функции являются обратными, тогда натуральный логарифм, является обратной для функции: $y=ex$.

Обратные функции являются симметричными относительно прямой $y=x$.Давайте построим график натурального логарифма, отразив экспоненциальную функцию относительно прямой $y=x$.
Стоит заметить угол наклона касательной к графику функции $y=ex$ в точке (0;1) равен 45°.

Тогда угол наклона касательной к графику натурального логарифма в точке (1;0) также будет равен 45°. Обе эти касательные будут параллельны прямой $y=x$. Давайте схематично изобразим касательные:

Свойства функции $y=\ln{x}$

1. $D(f)=(0;+∞)$.2. Не является ни четной, ни нечетной.3. Возрастает на всей области определения.4. Не ограничена сверху, не ограничена снизу.5. Наибольшего значения нет, наименьшего значения нет.6.

Непрерывна.7. $E(f)=(-∞; +∞)$.8. Выпукла вверх.9. Дифференцируема всюду.

В курсе высшей математики доказано, что производная обратной функции есть величина, обратная производной данной функции.

Углубляться в доказательство не имеет большого смысла, давайте просто запишем формулу: $y'=(\ln{x})'=\frac{1}{x}$. Пример. Вычислить значение производной функции: $y=\ln(2x-7)$ в точке $х=4$.Решение.В общем виде наша функция представляют функцию $y=f(kx+m)$, производные таких функций мы умеем вычислять.

$y'=(\ln{(2x-7)})'=\frac{2}{(2x-7)}$.Вычислим значение производной в требуемой точке: $y'(4)=\frac{2}{(2*4-7)}=2$.Ответ: 2. Пример. Провести касательную к графику функции $y=ln{x}$ в точке $х=е$.Решение.Уравнение касательной к графику функции, в точке $х=а$, мы хорошо помним.$y=f(a)+f'(a)(x-a)$.

Последовательно вычислим требуемые значения.$a=e$.$f(a)=f(e)=\ln{e}=1$.$f'(a)=\frac{1}{a}=\frac{1}{e}$.$y=1+\frac{1}{e}(x-e)=1+\frac{x}{e}-\frac{e}{e}=\frac{x}{e}$.Уравнение касательной в точке $х=е$ представляет собой функцию $y=\frac{x}{e}$.

Давайте построим график натурального логарифма и касательной.

Пример. Исследовать функцию на монотонность и экстремумы: $y=x6-6*ln{x}$.Решение.Область определения функции $D(y)=(0;+∞)$.Найдем производную заданной функции:$y'=6*x5-\frac{6}{x}$.Производная существует при всех х из области определения, тогда критических точек нет. Найдем стационарные точки:$6*x5-\frac{6}{x}=0$.

$\frac{6*x6-6}{x}=0$.$6*x6-6=0$.$x6-1=0$.$x6=1$.$x=±1$.Точка $х=-1$ не принадлежит области определения. Тогда имеем одну стационарную точку $х=1$. Найдем промежутки возрастания и убывания:

Точка $х=1$ – точка минимума, тогда $y_min=1-6*\ln{1}=1$.Ответ: Функция убывает на отрезке (0;1], функция возрастает на луче $[1;+∞)$.

$y_min=1$. Ребята, мы умеем вычислять производные натурального логарифма и экспоненциальной функции. Но мы пока не знаем, как вычислять производную любого другого логарифма и любой показательной функции.Рассмотрим показательную функцию $y=ax$.Вспомним свойство: $c{\log_c{b}}=b$.Тогда: $a=e{\ln{a}}$.

$ax={(e{\ln{a}})}x=e{x*\ln{a}}$.Найдем производную: $(ax)'=(e{x*ln{a}})'=\ln{a}*e{x*\ln{a}}=\ln{a}*ax$.Производная показательной функции равна: $(ax)'=\ln{a}*ax$. Например: $(3x)'=\ln{3}*3x$; $(7x)'=\ln{7}*7x$.

Перейдем к логарифмам, воспользуемся формулой перехода к новому основанию:$\log_a{x}=\frac{\ln{x}}{\ln{a}}$.Найдем производную:$(\log_a{x})'=(\frac{\ln{x}}{\ln{a}})'=\frac{1}{\ln{a}}*(\ln{x})'=\frac{1}{\ln{a}}*\frac{1}{x}=\frac{1}{x*\ln{a}}$.

Производная логарифма по основанию а числа х равна:$(\log_a{x})'=\frac{1}{x*\ln{a}}$. Например.$(\log_3{x})'=\frac{1}{x*\ln{3}}$.$(\log_8{x})'=\frac{1}{x*\ln{8}}$.

Задачи на натуральный логарифм для самостоятельного решения

1. Вычислить значение производной функции $y=\ln{(3x-5)}$ в точке $х=3$. 2. Вычислить значение производной функции $y=\log_4{(x+8)}$ в точке $х=-2$. 3. Найти уравнение касательной к графику функции $y=\ln{x}$ в точке $х=2е$. Схематично изобразить график.4. Исследовать функцию на монотонность и экстремумы: $y=x8-4*\ln{x2}$.

Источник: https://mathematics-tests.com/11-klass-uroki-presentatsii/algebra-11-klass-naturalny-logarifm

Логарифмы и логарифмические уравнения

Логарифмы и их свойства примеры с решением. Натуральный логарифм, функция ln x

Логарифмические уравнения и решение логарифмических уравнений входят в обязательный комплекс знаний и умений школьника, если он стремится сдать ЕГЭ по математике на высокий балл и поступить в ВУЗ, стать студентом. Рассмотрим, что же это такое — логарифм, логарифмические уравнения и как их решать.

Логарифм — что это

Логарифмом числа   по основанию  (=c)называется такой показатель степени , в которую нужно возвести , чтобы получить   (то есть ). При этом задаются ограничения: . Значение логарифма может быть любым.

Вычислите:

,   .

1. Действуем по определению. Подберем степень, в которую нужно возвести 3, чтобы получить 27.

.

2. При возведении , значит .

Ответ: 3; -3.

Изобретенные в 17 веке для ускорения вычислений, логарифмы значительно сократили время, необходимое для умножения многозначных чисел.

Они были основными в числовой работе более 300 лет, пока совершенство механических вычислительных машин в конце 19 века и компьютеров в 20 веке не сделали их устаревшими для крупномасштабных вычислений. Однако натуральный логарифм (с основанием e ≅ 2.

71828 и записываемый как ln n) продолжает оставаться одной из наиболее полезных функций в математике с приложениями к математическим моделям в физических и биологических науках.

Логарифмическая функция и ее график

Помня об ограничениях, построим по точкам графики логарифмической функция в разных случаях.

Пусть .  Подставим вместо разные числа и определим соответствующие значения переменной.

Отметим координаты точек на плоскости и соединим их плавной линией.

Логарифмическая функция все время возрастает.

Такое поведение характерно для всех логарифмических функций с основанием больше единицы.

Пусть теперь . Составим таблицу значений для этого случая.

Получим следующий график функции:

Все логарифмические функции с основанием от 0 до 1 убывают на всей области определения.

Графики всех логарифмических функций проходят через точку с координатами (1;0).

Особыми знаками принято обозначать логарифмы с основанием десять   и логарифмы с натуральным основанием .

Свойства логарифмов

Для упрощения вычислений при работе с логарифмами полезно знать и уметь использовать основные свойства.

Логарифмы были быстро приняты учеными из-за различных полезных свойств, которые упростили долгие, утомительные вычисления.

В частности, ученые могли найти произведение двух чисел m и n, посмотрев логарифм каждого числа в специальной таблице, сложив логарифмы, а затем снова сверившись с таблицей, чтобы найти число с этим вычисленным логарифмом (известным как его антилогарифм). Выраженная в терминах обычных логарифмов, эта связь определяется как log m n = log m + log n.

Например, 100 × 1000 можно рассчитать, просмотрев логарифмы 100 по основанию 10 и 1000 . Сложив логарифмы , а затем найдя его антилогарифм (то есть число, стоящее под знаком логарифма, в данном случае 100000) в таблице.

Аналогично, задачи деления преобразуются в задачи вычитания с логарифмами: log m/n = log m — log n.

Это еще не все. Расчет степеней и корней может быть упрощен с использованием логарифмов. Логарифмы также могут быть преобразованы между любыми положительными основаниями (за исключением того, что 1 не может использоваться в качестве основания, поскольку все его степени равны 1).

В логарифмические таблицы обычно включались только логарифмы для чисел от 0 до 10. Чтобы получить логарифм некоторого числа вне этого диапазона, число было сначала записано в удобном виде как произведение его значащих цифр и его степени по основанию 10 —

например, 358 будет записано как 3,58 × 10 2,

а 0,0046 будет записано как 4,6 × 10-3.

Тогда логарифм значащих цифр — десятичная дробь между 0 и 1, известная как мантисса — будет найдена в таблице. Например, чтобы найти логарифм 358, можно посмотреть таблицу значений логарифмов 3,58 ≅ 0,55388. Следовательно, lg 358 = lg 3,58 + lg 100 = 0,55388 + 2 = 2,55388.

В примере числа с отрицательным показателем степени, такого как 0,0046, можно посмотреть lg 4,6 ≅ 0,66276. Следовательно, lg 0,0046 = lg 4,6 + lg 0,001 = 0,66276 — 3 = -2,33724.

История логарифмов

Изобретению логарифмов предшествовало сравнение арифметических и геометрических последовательностей.

В геометрической последовательности каждый член образует постоянное соотношение (знаменатель прогрессии) с предыдущим и последующим членами прогрессии: например,… 1/1000, 1/100, 1/10, 1, 10, 100, 1000… имеет общее отношение 10. В арифметической последовательности каждый последующий член отличается на константу, известную как разность прогрессии, например,… −3, −2, −1, 0, 1, 2, 3… имеет разность 1.

Обратите внимание, что геометрическая последовательность может быть записана в терминах ее общего отношения, для приведенной выше примерной геометрической последовательности:… 10−3, 10 −2, 10 −1, 10 0, 10 1, 10 2, 10 3….

Умножение двух чисел в геометрической последовательности, скажем, 1/10 и 100, равно суммированию соответствующих показателей степеней с основанием 10: -1 и 2, чтобы получить 10 1 = 10. Таким образом, умножение преобразуется в сложение.

Однако первоначальное сравнение между двумя возможностями вычислений произведения не было основано на каком-либо явном использовании экспоненциальной записи: это было последующее развитие.

В 1620 году в Праге швейцарским математиком Йостом Бурги была опубликована первая таблица, основанная на концепции соотношения геометрических и арифметических последовательностей.

Шотландский математик Джон Непер опубликовал свое открытие логарифмов в 1614 году. Его целью было помочь в умножении величин, которые были связаны с вычислением синуса в прямоугольном треугольнике.

Вычисления Непера и Бригса

В сотрудничестве с английским математиком Генри Бригсом Непер приспособил свой логарифм к его современной форме.

Для неперова логарифма сравнение будет происходить между точками, движущимися по градуированной прямой линии, точка L (для логарифма) движется равномерно от минус бесконечности до плюс бесконечности, точка Х (для синуса) движется от нуля до бесконечности со скоростью пропорционально его расстоянию от нуля. Кроме того, L равно нулю, когда X равно единице, и их скорость в этой точке равна.

Суть открытия Непера состоит в том, что он связал между собой арифметические и геометрические прогрессии — то есть умножение и возведение в степень значений точки X соответствуют сложению и умножению значений точки L соответственно. На практике удобно ограничивать движение L и X требованием, чтобы L = 1 при X = 10, в дополнение к условию, что X = 1 при L = 0. Это изменение привело к бригиану, или общему логарифму.

Непер умер в 1617 году, а Бригс продолжил расчеты в одиночку, опубликовав в 1624 году таблицу логарифмов, рассчитанную до 14 знаков после запятой для чисел от 1 до 20 000 и от 90 000 до 100 000. Но и в таблицах Бригса обнаружились ошибки. Первое безошибочное издание на основе таблиц Георга Веги появилось только в 1857 году в Берлине.

В 1620-е годы Эдмунд Уингейт и Уильям Отред изобрели первую логарифмическую линейку, до появления карманных калькуляторов — логарифмические линейки были незаменимы в инженерных расчетах.

Современное определение логарифмирования — как операции, обратной возведению в степень — впервые появилось у Валлиса и Иоганна Бернулли, а окончательно было узаконено Эйлером в XVIII веке. Эйлеру принадлежит и заслуга распространения логарифмической функции на комплексную область.

Где используются логарифмы

Некоторые области науки, где применяются логарифмы:

  • Децибелы, используемые для измерения звукового давления, определяются с помощью логарифмов.
  • Шкала Рихтера, которая используется для измерения интенсивности землетрясений, определяется с помощью логарифмов
  • Значения pH в химии, которое используется для определения уровня кислотности вещества, также определяется с использованием понятия логарифма.
  • Когда две измеренные величины оказываются связанными степенной функцией, параметры функции могут быть оценены с использованием логарифмов.
  • Логарифмы могут быть использованы для решения уравнений, таких как 2х = 3.

Решение логарифмических уравнений

Рассмотрим простейшие логарифмические уравнения и примеры их решения.

Задание 1

Решите уравнение log5(x2+x)=log5(x2+9)

Ответ:9

Решение: Так как основания логарифмов одинаковы, то числа, стоящие под знаком логарифмов — одинаковы:

,

Задание 2

Решите уравнение logx-5 49 = 2.

Если уравнение с логарифмами имеет более одного корня, в ответе укажите наибольший из них.

Ответ: 12

Решение:

(x – 5)2 = 49;

x2 – 10 x + 25 = 49;

x2 – 10 x – 24 = 0;

a = 1 , b = -10, c = -24;

При х = –2 основание логарифма отрицательно (известно, что основание должно быть положительным). Решением является корень 12. Сделайте проверку.

Задание 3

Найдите корень уравнения log2(4 – x) = 7.

Ответ:-124

Решение:

27 = 4 – x;

128=4-х;

х = 4 – 128;

х = −124.

Задание 4

Найдите корень уравнения .

Ответ: 115

Решение: 27=33, тогда

или или  уравнения с логарифмами. По основному свойству логарифмов: при возведении числа в степень логарифма с таким же основанием, остается число, стоящее под знаком логарифма, то есть: . Тогда получим: .

Решая данное уравнение, получим: ,

.

Задание 5

Решите уравнение logx+725 = 2. Если уравнение имеет более одного корня, в ответе укажите наименьший из них.

Ответ: -2

Решение: .

,  .

и

и

Так как x должен быть больше -7, то корень  не подходит. И остается один единственный корень: .

Таким образом, уже не важно — наибольший это корень или наименьший, он один подходит. Поэтому в ответе указываем его.

Задание 6

Решите уравнение log2(2 – x) = log2(2 – 3x) + 1

Ответ: x=0,4.

Решение: мы знаем, что , тогда пусть в нашем случае : ,

применяя свойство сложения двух логарифмов с одинаковыми основаниями, получим:

или

.

Задание 7

Решите уравнение log5(7 – x) = log5(3 – x) + 1

Ответ: 2

Решение: мы знаем, что , тогда пусть в нашем случае : .

применяя свойство сложения двух логарифмов с одинаковыми основаниями, получим:

.

Задание 8

Найдите корень уравнения

Ответ: x=-1

Решение:

.

так как у нас должно выполняться условие:

, откуда , таким образом нам подходит только один корень .

Итак, мы рассмотрели решение логарифмических уравнений с подробным решением каждого из них. Вы узнали, что такое логарифм, историю возникновения логарифма и имена ученых, которые схватили идею расчета произведения через сложение и изобрели логарифм, который на многие годы облегчил расчеты инженеров, строителей, ученых.

Источник: https://novstudent.ru/logarifmicheskie-uravneniya/

Формулы логарифмов: примеры решения перехода к новому основанию натурального логарифма и таблица или шпаргалка для этого в 10 классе

Логарифмы и их свойства примеры с решением. Натуральный логарифм, функция ln x

19.12.2019

Сегодня мы поговорим о формулах логарифмов и дадим показательные примеры решения. Ранее мы уже познакомились с понятием логарифма. А также рассмотрели основные свойства и примеры решения.

Формулы логарифмов сами по себе подразумевают шаблоны решения согласно основным свойствам логарифмов. Прежде применять формулы логарифмов для решения напомним для вас, сначала все свойства.

Формулы логарифмов. Логарифмы примеры решения

Теперь на основе этих формул(свойств), покажем примеры решения логарифмов.

Примеры решения логарифмов на основании формул

Логарифм положительного числа b по основанию a (обозначается logab) — это показатель степени, в которую надо возвести a, чтобы получить b, при этом b > 0, a > 0, а 1.

Согласно определения logab = x, что равносильно ax = b, поэтому logaax = x.

Логарифмы, примеры:

log28 = 3, т.к. 23 = 8

log749 = 2, т.к. 72 = 49

log51/5 = -1, т.к. 5-1 = 1/5

Десятичный логарифм — это обычный логарифм, в основании которого находится 10. Обозначается как lg.

lg100 = 2

log10100 = 2, т.к. 102 = 100

Натуральный логарифм — также обычный логарифм логарифм, но уже с основанием е (е = 2,71828… — иррациональное число). Обозначается как ln.

Формулы или свойства логарифмов желательно запомнить, потому что они понадобятся нам в дальнейшем при решении логарифмов, логарифмических уравнений и неравенств. Давайте еще раз отработаем каждую формулу на примерах.

Основное логарифмическое тождествоa logab = bПример.

82log83 = (82log83)2 = 32 = 9

Логарифм произведения равен сумме логарифмов loga (bc) = logab + logacПример.

log38,1 + log310 = log3 (8,1*10) = log381 = 4

Логарифм частного равен разности логарифмовloga (b/c) = logab — logacПример.

9 log550/9 log52 = 9 log550- log52 = 9 log525 = 9 2 = 81

Свойства степени логарифмируемого числа и основания логарифма

Показатель степени логарифмируемого числа logab m = mlogab

Показатель степени основания логарифма loganb =1/n*logab

loganb m = m/n*logab,

если m = n, получим loganb n = logab

Пример.

log49 = log223 2 = log23

Переход к новому основанию
logab = logcb/logca,

если c = b, получим logbb = 1

тогда logab = 1/logba

Пример.

log0,83*log31,25 = log0,83*log0,81,25/log0,83 = log0,81,25 = log4/55/4 = -1

Как видите, формулы логарифмов не так сложны как кажутся. Теперь рассмотрев примеры решения логарифмов мы можем переходить к логарифмическим уравнениям.

Источник:

Логарифм: что это? Все формулы. Простейшие уравнения и неравенства

Сейчас речь пойдет о трех страшных буквах: l o g.Существовать в нашем бытии они просто так не могут. Обязательно должен быть какой-нибудь индекс — число снизу (основание логарифма) и число после букв (аргумент логарифма).

Прежде, чем мы перейдем к тому, что такое логарифм, решим парочку подводящих примеров.

Чтобы справиться с этим примером, мы проговариваем в голове: какое число нужно дважды (т.к. корень квадратный) умножить само на себя, чтобы получить 81.

А этот пример можно решить по алгоритму (решения показательных уравнений), а можно так же провести разговор с самим собой (главное не вслух, я считаю это нормально, но кого-то вы можете напугать разговором с самим собой): сколько раз нужно число 3 умножить само на себя, чтобы получить 27. Постепенным перемножением мы дойдем до ответа.

Тогда, если дело касается логарифма:

можно сказать так: в какую степень нужно возвести 3 (число снизу — основание логарифма), чтобы получить 27 (число слева — аргумент логарифма). Не напоминает выше стоящий пример?

На самом деле в этом и заключается основная формула (определение логарифма):

Логарифм говорит нам (кому-то кричит): логарифм числа «b» по основанию «a» равняется числу «c». Тогда без логарифма это можно сформулировать так: чтобы получить число «b», требуется число «a» возвести в степень «c». Логарифм — это действие, обратное возведению в степень.

У отца log есть два родных сына: ln и lg. Так же, как сыновья отличаются возрастом (мы говорим о максимальной точности), так и эти логарифмы отличаются основанием (числовым индексом снизу).

Данные логарифмы придумали для упрощения записи. На самом деле в прикладной математики именно логарифмы по такому основанию встречаются чаще всех остальных. А мы все в глубине души народ ленивый, так что почему бы себе жизнь не упростить?

Что нужно запомнить: ln — это обычный логарифм только по основанию e ( e — это число Эйлера, e = 2,7182…, мой номер телефона, кстати, — это последние 11 цифр числа Эйлера, так что буду ждать звонка).

А lg — это обычный логарифм по основанию 10 (10ая система — это система счисления, в которой мы живем, столько пальцев на руках у среднего человека. В общем 10 — это как 9, только на 1 больше).

Как мы не можем существовать без еды, воды, интернета…  Так и логарифм не представляет свое существование без ОДЗ.

Всегда, когда существует логарифм, должно быть:

«Почему это так?» — это первый вопрос, который я предоставляю тебе. Советую начать с того, что логарифм — это обратное действие от возведения в степень.

А теперь  разберем теорию на практике:

В какую степень нужно возвести два (число в основании), чтобы получить шестнадцать (аргумент логарифма).

Два нужно четыре раза умножить само на себя, чтобы получить 16.

Ответ: 4.

Источник:

Логарифмы: правила, основные свойства и формулы :

Логарифмы и правила действий с ними достаточно емкие и простые. Следовательно, разобраться в данной теме вам не составит труда. После того как вы узнаете все правила натуральных логарифмов, любая задача решится самостоятельно.

Первое знакомство с этой темой может показаться скучным и бессмысленным, но именно при помощи логарифмов решились многие проблемы математиков XVI века. «О чем это?» — подумали вы.

Прочтите статью до конца и узнаете, что этот раздел «царицы наук» может быть интересен не только математикам, ученым точных наук, но и простым ученикам средних школ.

Источник: https://rgiufa.ru/matematika-fizika-himiya/kakie-sushhestvuyut-formuly-logarifmov.html

Что такое логарифм простыми словами

Логарифмы и их свойства примеры с решением. Натуральный логарифм, функция ln x

Многие школьники считают логарифмы сложной темой в курсе математики. Но если разобрать, что такое логарифм подробно, от простого к сложному, то на ЕГЭ вы не станете их опасаться.

Часто у учеников возникает путаница, где аргумент, а где основание логарифма. И что же нужно возвести в степень, чтобы этот логарифм, наконец, посчитать.

В этой статье мы откроем секрет, как легче запомнить принцип решения логарифма.

Итак, давайте разбираться, что такое логарифм.

Что такое логарифм и как его посчитать

Логарифм имеет следующий вид:

где a – это основание логарифма,

b – это аргумент логарифма

Чтобы узнать значение логарифма приравняем его к X.и преобразовываем вЗапомните, что именно основание (оно выделено красным) возводится в степень.

Чтобы было легче, можно запоминать так – основание всегда остается внизу (и в первом, и во втором выражении a внизу)!

Приведем пример:

Чтобы вычислить данный логарифм, необходимо приравнять его к X и воспользоваться правилом, описанным выше:А в какую степень нужно возвести 2, чтобы получилось 8? Конечно же в третью степень, таким образом:

Еще раз обращаю ваше внимание, что основание (в нашем случае это – 2) всегда находится внизу и именно оно возводится в степень.

Еще примеры:

Логарифмы со специальным обозначением

Для некоторых логарифмов в математике введены специальные обозначения. Это связано с тем, что такие логарифмы встречаются особенно часто. К таким логарифмам относятся десятичный логарифм и натуральный логарифм. Для этих логарифмов справедливы все правила, что и для обычных логарифмов.

Десятичный логарифм

Десятичный логарифм обозначается lg и имеет основание 10, т.е.

Чтобы вычислить десятичный логарифм, нужно 10 возвести в степень X.

Например, вычислим lg100

Натуральный логарифм

Натуральный логарифм обозначается ln и имеет основание e, то есть

Чтобы вычислить данный логарифм нужно число е возвести в степень x. Некоторые из вас спросят, что это за число такое е? Число е – это иррациональное число, т.е. точное его значение вычислить невозможно. е = 2,718281…

Сейчас не будем подробно разбирать, зачем это число нужно, просто запомним, что

И вычислить его можно таким образом:

Основные свойства логарифмов

Логарифмы можно преобразовывать, но для этого необходимо знать правила, которые называются основными свойствами логарифмов. Данные свойства обязательно нужно знать каждому ученику! Без знания этих свойств невозможно решить ни одну серьезную логарифмическую задачу. Вот эти свойства:

Совет – тренируйтесь применять эти свойства в обе стороны, то есть как слева направо, так и справа налево!

Рассмотрим свойства логарифмов на примерах.

Логарифмический ноль и логарифмическая единица

Это следствия из определения логарифма. И их нужно обязательно запомнить. Эти  простейшие свойства нередко вводят учеников в ступор.

Запомните, что логарифм от a по основанию а всегда равен единице:

loga a = 1 – это логарифмическая единица.

Если же в аргументе стоит единица, то такой логарифм всегда равен нулю независимо от основания, так как a0 = 1:

loga 1 = 0 – логарифмический ноль.

Основное логарифмическое тождество

В первой формуле число m становится степенью, которая стоит в аргументе. Данное число может быть любым. Некоторые выражения могут быть решены только с помощью этого тождества.

Вторая формула по сути является просто переформулированным определением логарифма

Разберем применение тождества на примере:

Необходимо найти значение выраженияСначала преобразуем логарифм

Вернемся к исходному выражению и применим правило умножения степеней с одинаковым основанием:Теперь применим основное логарифмическое  тождество и получим:

Сумма логарифмов. Разница логарифмов

Логарифмы с одинаковыми основаниями можно складывать:Логарифмы с одинаковыми основаниями можно вычитать:Мы видим, что исходные выражения состояли из логарифмов, которые по отдельности не вычисляются, а при применении свойств логарифмов у нас получились нормальные числа. Поэтому повторим, что основные свойства логарифмов нужно знать обязательно!

Обратите внимание, что формулы суммы и разности логарифмов верны только для логарифмов с одинаковыми основаниями! Если основания разные, то данные свойства применять нельзя!

Вынесение показателя степени из логарифма

Вынесение показателя степени из логарифма:

Переход к новому основанию

Когда мы разбирали формулы суммы и разности логарифмов, то обращали внимание на то, что основания логарифмов должны быть при этом одинаковыми. А что же делать, если основания логарифмов разные? Воспользоваться свойством перехода к новому основанию.

Такие формулы чаще всего нужны при решении логарифмических уравнений и неравенств.

Разберем на примере.

Необходимо найти значение такого выраженияДля начала преобразуем каждый логарифм с помощью свойства вынесения показателя степени из логарифма:

Теперь применим переход к новому основанию для второго логарифма:Подставим полученные результаты в исходное выражение:

10 примеров логарифмов с решением

1. Найти значение выражения2. Найти значение выражения3. Найти значение выражения4. Найти значение выражения5. Найти значение выражения6. Найти значение выраженияСначала найдем значениеДля этого приравняем его к Х:Тогда изначальное выражение принимает вид:

7. Найти значение выраженияПреобразуем наше выражение:Теперь воспользуемся свойством вынесения показателя степени из логарифма и получим: 8.

Найти значение выраженияТак как основания логарифмов одинаковые, воспользуемся свойством разности логарифмов:9. Найти значение выраженияТак как основания логарифмов разные, применять свойство суммы логарифмов нельзя.

Поэтому решаем каждый логарифм по отдельности:Подставляем полученные значения в исходное выражение:

4 + 3 = 7

10. Найти значение выраженияОбращаем внимание, что данное выражение – это не произведение логарифмов. У логарифма по основанию 4 подлогарифным выражением является log216. Поэтому сначала найдем значение log216, а затем подставим полученный результат в log4:

Надеюсь, теперь вы разобрались, что такое логарифм.

Источник: https://yourrepetitor.ru/chto-takoe-logarifm-kak-poschitat-logarifm-svojstva-logarifmov-primery-resheniya-logarifmov/

Логарифмы: примеры и решения

Логарифмы и их свойства примеры с решением. Натуральный логарифм, функция ln x

Как известно, при перемножении выражений со степенями их показатели всегда складываются (ab*ac = ab+c). Этот математический закон был выведен Архимедом, а позже, в VIII веке, математик Вирасен создал таблицу целых показателей.

Именно они послужили для дальнейшего открытия логарифмов. Примеры использования этой функции можно встретить практически везде, где требуется упростить громоздкое умножение на простое сложение.

Если вы потратите минут 10 на прочтение этой статьи, мы вам объясним, что такое логарифмы и как с ними работать. Простым и доступным языком.

Определение в математике

Логарифмом называется выражение следующего вида: logab=c, то есть логарифмом любого неотрицательного числа (то есть любого положительного) “b” по его основанию “a” считается степень “c”, в которую необходимо возвести основание “a”, чтобы в итоге получить значение “b”. Разберем логарифм на примерах, допустим, есть выражение log28. Как найти ответ? Очень просто, нужно найти такую степень, чтобы из 2 в искомой степени получить 8. Проделав в уме некоторые расчеты, получаем число 3! И верно, ведь 2 в степени 3 дает в ответе число 8.

Разновидности логарифмов

Для многих учеников и студентов эта тема кажется сложной и непонятной, однако на самом деле логарифмы не так страшны, главное – понять общий их смысл и запомнить их свойста и некоторые правила. Существует три отдельных вида логарифмических выражений:

  1. Натуральный логарифм ln a, где основанием является число Эйлера (e = 2,7).
  2. Десятичный логарифм lg a, где основанием служит число 10.
  3. Логарифм любого числа b по основанию a>1.

Каждый из них решается стандартным способом, включающим в себя упрощение, сокращение и последующее приведение к одному логарифму с помощью логарифмических теорем. Для получения верных значений логарифмов следует запомнить их свойства и очередность действий при их решениях.

Правила и некоторые ограничения

В математике существует несколько правил-ограничений, которые принимаются как аксиома, то есть не подлежат обсуждению и являются истиной.

Например, нельзя числа делить на ноль, а еще невозможно извлечь корень четной степени из отрицательных чисел.

Логарифмы также имеют свои правила, следуя которым можно с легкостью научиться работать даже с длинными и емкими логарифмическими выражениями:

  • основание “a” всегда должно быть больше нуля, и при этом не быть равным 1, иначе выражение потеряет свой смысл, ведь “1” и “0” в любой степени всегда равны своим значениям;
  • если а > 0, то и аb>0, получается, что и “с” должно быть больше нуля.

Как решать логарифмы?

К примеру, дано задание найти ответ уравнения 10х= 100. Это очень легко, нужно подобрать такую степень, возведя в которую число десять, мы получим 100. Это, конечно же, квадратичная степень! 102=100.

А теперь давайте представим данное выражение в виде логарифмического. Получим log10100 = 2. При решении логарифмов все действия практически сходятся к тому, чтобы найти ту степень, в которую необходимо ввести основание логарифма, чтобы получить заданное число.

Для безошибочного определения значенияя неизвестной степени необходимо научиться работать с таблицей степеней. Выглядит она следующим образом:

Как видите, некоторые показатели степени можно угадать интуитивно, если имеется технический склад ума и знание таблицы умножения. Однако для больших значений потребуется таблица степеней. Ею могут пользоваться даже те, кто совсем ничего не смыслит в сложных математических темах.

В левом столбце указаны числа (основание a), верхний ряд чисел – это значение степени c, в которую возводится число a. На пересечении в ячейках определены значения чисел, являющиеся ответом (ac=b). Возьмем, к примеру, самую первую ячейку с числом 10 и возведем ее в квадрат, получим значение 100, которое указано на пересечении двух наших ячеек.

Все так просто и легко, что поймет даже самый настоящий гуманитарий!

Уравнения и неравенства

Получается, что при определенных условиях показатель степени – это и есть логарифм. Следовательно, любые математические численные выражения можно записать в виде логарифмического равенства. Например, 34=81 можно записать в виде логарифма числа 81 по основанию 3, равному четырем (log381 = 4).

Для отрицательных степеней правила такие же: 2-5= 1/32 запишем в виде логарифма, получим log2 (1/32) = -5. Одной из самых увлекательных разделов математики является тема “логарифмы”. Примеры и решения уравнений мы рассмотрим чуть ниже, сразу же после изучения их свойств.

А сейчас давайте разберем, как выглядят неравенства и как их отличить от уравнений.

Дано выражение следующего вида: log2(x-1) > 3 – оно является логарифмическим неравенством, так как неизвестное значение “х” находится под знаком логарифма. А также в выражении сравниваются две величины: логарифм искомого числа по основанию два больше, чем число три.

Самое главное отличие между логарифмическими уравнениями и неравенствами заключается в том, что уравнения с логарифмами (пример – логарифм2x = √9) подразумевают в ответе одно или несколько определенных числовых значений, тогда как при решении неравенства определяются как область допустимых значений, так и точки разрыва этой функции. Как следствие, в ответе получается не простое множество отдельных чисел как в ответе уравнения, а а непрерывный ряд или набор чисел.

Основные теоремы о логарифмах

При решении примитивных заданий по нахождению значений логарифма, его свойства можно и не знать. Однако когда речь заходит о логарифмических уравнениях или неравенствах, в первую очередь, необходимо четко понимать и применять на практике все основные свойства логарифмов. С примерами уравнений мы познакомимся позже, давайте сначала разберем каждое свойство более подробно.

  1. Основное тождество выглядит так: аlogaB=B. Оно применяется только при условии, когда а больше 0, не равно единице и B больше нуля.
  2. Логарифм произведения можно представить в следующей формуле: logd(s1*s2) = logds1 + logds2. При этом обязательным условием является: d, s1 и s2 > 0; а≠1. Можно привести доказательство для этой формулы логарифмов, с примерами и решением. Пусть logas1 = f1 и logas2 = f2, тогда af1= s1, af2= s2. Получаем, что s1*s2 = af1*af2= af1+f2 (свойства степеней), а далее по определению: loga(s1*s2)= f1+ f2 = logas1 + logas2, что и требовалось доказать.
  3. Логарифм частного выглядит так: loga(s1/s2) = logas1- logas2.
  4. Теорема в виде формулы приобретает следующий вид: logaq bn = n/q logab.

Называется эта формула “свойством степени логарифма”. Она напоминает собой свойства обычных степеней, и неудивительно, ведь вся математика держится на закономерных постулатах. Давайте посмотрим на доказательство.

Пусть logab = t, получается at=b. Если возвести обе части в степень m: atn = bn;

но так как atn= (aq)nt/q = bn, следовательно logaq bn = (n*t)/t, тогда logaq bn = n/q logab. Теорема доказана.

Примеры задач и неравенств

Самые распространенные типы задач на тему логарифмов – примеры уравнений и неравенств. Они встречаются практически во всех задачниках, а также входят в обязательную часть экзаменов по математике. Для поступления в университет или сдачи вступительных испытаний по математике необходимо знать, как правильно решать подобные задания.

К сожалению, единого плана или схемы по решению и определению неизвестного значения логарифма не существует, однако к каждому математическому неравенству или логарифмическому уравнению можно применить определенные правила. Прежде всего следует выяснить, можно ли упростить выражение или привести к общему виду. Упрощать длинные логарифмические выражения можно, если правильно использовать их свойства. Давайте скорее с ними познакомимся.

При решении же логарифмических уравнений, следует определить, какой перед нами вид логарифма: пример выражения может содержать натуральный логарифм или же десятичный.

Вот примеры десятичных логарифмов: ln100, ln1026. Их решение сводится к тому, что нужно определить ту степень, в которой основание 10 будет равно 100 и 1026 соответственно. Для решений же натуральных логарифмов нужно применить логарифмические тождества или же их свойства. Давайте на примерах рассмотрим решение логарифмических задач разного типа.

Как использовать формулы логарифмов: с примерами и решениями

Итак, рассмотрим примеры использования основных теорем о логарифмах.

  1. Свойство логарифма произведения можно применять в заданиях, где необходимо разложить большое значение числа b на более простые сомножители. Например, log24 + log2128 = log2(4*128) = log2512. Ответ равен 9.
  2. log48 = log22 23 = 3/2 log22 = 1,5 – как видите, применяя четвертое свойство степени логарифма, удалось решить на первый взгляд сложное и нерешаемое выражение. Необходимо всего лишь разложить основание на множители и затем вынести значения степени из знака логарифма.

Задания из ЕГЭ

Логарифмы часто встречаются на вступительных экзаменах, особенно много логарифмических задач в ЕГЭ (государственный экзамен для всех выпускников школ). Обычно эти задания присутствуют не только в части А (самая легкая тестовая часть экзамена), но и в части С (самые сложные и объемные задания). Экзамен подразумевает точное и идеальное знание темы “Натуральные логарифмы”.

Примеры и решения задач взяты из официальных вариантов ЕГЭ. Давайте посмотрим, как решаются такие задания.

Дано log2(2x-1) = 4. Решение:
перепишем выражение, немного его упростив log2(2x-1) = 22, по определению логарифма получим, что 2x-1 = 24, следовательно 2x = 17; x = 8,5.

Ниже даны несколько рекомендаций, следуя которым можно с легкостью решать все уравнения, содержащие выражения, которые стоят под знаком логарифма.

  • Все логарифмы лучше всего приводить к одному основанию, чтобы решение не было громоздким и запутанным.
  • Все выражение, стоящие под знаком логарифма, указываются как положительные, поэтому при вынесении множителем показателя степени выражения, который стоит под знаком логарифма и в качестве его основания, остающееся под логарифмом выражение должно быть положительно.

Источник: https://FB.ru/article/333064/logarifmyi-primeryi-i-resheniya

Логарифм и его свойства. Как решать логарифмы

Логарифмы и их свойства примеры с решением. Натуральный логарифм, функция ln x

Все знакомы, что такое степень числа (если нет, то вам сюда). В таблице приведены различные степени числа 2. Глядя на таблицу, ясно, что, например, число 32 – это 2 в пятой степени, то есть двойка, умноженная на саму себя пять раз.

Теперь при помощи этой таблицы введем понятие логарифма.

Логарифм от числа 32 по основанию 2 (\(log_{2}(32)\)) – это в какую степень нужно возвести двойку, чтобы получить 32. Из таблицы видно, что 2 нужно возвести в пятую степень. Значит наш логарифм равен 5:

$$ log_{2}(32)=5;$$

Аналогично, глядя в таблицу получим, что:

$$log_{2}(4)=2;$$ $$log_{2}(8)=3;$$ $$log_{2}(16)=4;$$ $$log_{2}(64)=6;$$ $$log_{2}(128)=7.$$

Естественно, логарифм бывает не только по основанию 2, а по любым основаниям больших 0. Можете так же создавать таблицы для разных чисел. Но, конечно, со временем вы это будете делать в уме.

Теперь дадим определение логарифма в общем виде:

Логарифмом положительного числа \(b\) по основанию положительно числа \(a\) называется степень \(c\), в которую нужно возвести число \(a\), чтобы получить \(b\)

$$log_{a}(b)=c;$$ $$a{c}=b.$$

Будьте внимательны! В первое время обычно путают, что такое основание и то, что стоит под логарифмом (аргумент). Логарифм – это всегда функция, зависящая от двух переменных. Чтобы их не путать, помните определение логарифма – это степень, в которую нужно возвести основание, чтобы получить аргумент.

Но, конечно, вы часто будете сталкиваться не с такими простыми логарифмами, как в примерах с двойкой, а очень часто будет, что логарифм нельзя в уме посчитать. Действительно, что скажете про логарифм пяти по основанию два:

$$log_{2}(5)=???$$

Как его посчитать? При помощи калькулятора. Он нам покажет, что такой логарифм равен иррациональному числу:

$$log_{2}(5)=2,32192809…$$

Или логарифм шести по основанию 4:

$$log_{4}(6)= 1.2924812…$$

На уроках математики пользоваться калькулятором нельзя, поэтому на экзаменах и контрольных принято оставлять такие логарифмы в виде логарифма – не считая его, это не будет ошибкой!

Но иногда можно столкнуться с заданием, где нужно примерно оценить значение логарифма – это очень просто! Давайте для примера оценим логарифм \(log_{4}(6)\). Необходимо подобрать слева и справа от 6 такие ближайшие числа, логарифм от которых мы сможем посчитать, другими словами, надо найти степени 4-ки ближайшие к 6ке:

$$ log_{4}(4) \lt log_{4}(6) \lt log_{4}(16);$$ $$ 1 \lt log_{4}(6) \lt 2. $$

Значит \(log_{4}(6)\) принадлежите промежутку от 1 до 2:

$$ log_{4}(6) \in [1;2]. $$

Как посчитать логарифм

Перед тем, как научиться считать логарифмы, нужно ввести несколько ограничений. Дело в том, что функция логарифма \(log_{a}(b)\) существует только при положительных значениях основания \(a\) и аргумента \(b\). И кроме этого на основание накладывается условие, что она не должно быть равно \(1\).

$$ log_{a}(b) \quad существует,\;при \quad a \gt 0; \;b \gt 0 \;a eq 1.$$

Почему так? Это следует из определения показательной функций. Показательная функция не может быть \(0\). А основание не равно \(1\), потому что тогда логарифм теряет смысл – ведь \(1\) в любой степени это будет \(1\).

При этих ограничениях логарифм существует.

В дальнейшем при решении различных логарифмических уравнений и неравенств вам это пригодится для ОДЗ.

Обратите внимание, что само значение логарифма может быть любым. Это же степень, а степень может быть любой – отрицательной, рациональной, иррациональной и т.д.

$$log_{3}(\frac{1}{3})=-1;$$

Так как (вспоминайте определение отрицательной степени)

$$3{-1}=\frac{1}{3};$$

Теперь давайте разберем общий алгоритм вычисления логарифмов:

  • Во-первых, постарайтесь представить основание и аргумент (то, что стоит под логарифмом) в виде степеней с одинаковым основанием. Параллельно с этим избавляемся от всех десятичных дробей – переводим их в обыкновенные.
  • Разобраться в какую степень \(x\) нужно возвести основание, чтобы получить аргумент. Когда у вас там и там степени с одинаковым основанием, это сделать довольно просто.
  • \(x\) и будет искомым значением логарифма.

Давайте разберем на примерах.

Пример 1. Посчитать логарифм \(9\) по основанию \(3\): \(log_{3}(9)\)

  • Сначала представим аргумент и основание в виде степени тройки: $$ 3=31, \qquad 9=32;$$
  • Теперь надо разобраться в какую степень \(x\) нужно возвести \(31\), чтобы получить \(32\) $$ (31)x=32, $$ $$ 3{1*x}=32, $$ $$ 1*x=2,$$ $$ x=2.$$
  • Вот мы и решили: $$log_{3}(9)=2.$$

Пример 2. Вычислить логарифм \(\frac{1}{125}\) по основанию \(5\): \(log_{5}(\frac{1}{125})\)

  • Представим аргумент и основание в виде степени пятерки: $$ 5=51, \qquad \frac{1}{125}=\frac{1}{53}=5{-3};$$
  • В какую степень \(x\) надо возвести \(51\), чтобы получить \(5{-3}\): $$ (51)x=5{-3}, $$ $$ 5{1*x}=5{-3},$$ $$1*x=-3,$$ $$x=-3.$$
  • Получили ответ: $$ log_{5}(\frac{1}{125})=-3.$$

Пример 3. Вычислить логарифм \(4\) по основанию \(64\): \(log_{64}(4)\)

  • Представим аргумент и основание в виде степени двойки: $$ 64=26, \qquad 4=22;$$
  • В какую степень \(x\) надо возвести \(26\), чтобы получить \(2{2}\): $$ (26)x=2{2}, $$ $$ 2{6*x}=2{2},$$ $$6*x=2,$$ $$x=\frac{2}{6}=\frac{1}{3}.$$
  • Получили ответ: $$ log_{64}(4)=\frac{1}{3}.$$

Пример 4. Вычислить логарифм \(1\) по основанию \(8\): \(log_{8}(1)\)

  • Представим аргумент и основание в виде степени двойки: $$ 8=23 \qquad 1=20;$$
  • В какую степень \(x\) надо возвести \(23\), чтобы получить \(2{0}\): $$ (23)x=2{0}, $$ $$ 2{3*x}=2{0},$$ $$3*x=0,$$ $$x=\frac{0}{3}=0.$$
  • Получили ответ: $$ log_{8}(1)=0.$$

Пример 5. Вычислить логарифм \(15\) по основанию \(5\): \(log_{5}(15)\)

  • Представим аргумент и основание в виде степени пятерки: $$ 5=51 \qquad 15= ???;$$ \(15\) в виде степени пятерки не представляется, поэтому этот логарифм мы не можем посчитать. У него значение будет иррациональное. Оставляем так, как есть: $$ log_{5}(15).$$

Внимание!

Как понять, что некоторое число \(a\) не будет являться степенью другого числа \(b\). Это довольно просто – нужно разложить \(a\) на простые множители.

$$16=2*2*2*2=24,$$

\(16\) разложили, как произведение четырех двоек, значит \(16\) будет степенью двойки.

$$ 48=6*8=3*2*2*2*2,$$

Разложив \(48\) на простые множители, видно, что у нас есть два множителя \(2\) и \(3\), значит \(48\) не будет степенью.

Теперь поговорим о наиболее часто встречающихся логарифмах. Для них даже придумали специально названия – десятичный логарифм и натуральный логарифм. Давайте разбираться.

Десятичный логарифм

На самом деле, все просто. Десятичный логарифм – это любой обыкновенный логарифм, но с основанием 10. Обозначается – \(lg(a)\).

Пример 6

$$ log_{10}(100)= lg(100)=2;$$ $$log_{10}(1000)=lg(1000)=3;$$ $$log_{10}(10)=lg(10)=1.$$

Натуральный логарифм

Натуральным логарифмом называется логарифм по основанию \(e\). Обозначение – \(ln(x)\). Что такое \(e\)? Так обозначают экспоненту, число-константу, равную, примерно, \(2,718281828459…\).

Это число известно тем, что используется в многих математических законах.

Просто запомните, что логарифмы с основанием \(e\) часто встречаются, и поэтому им придумали специальное название – натуральный логарифм.

Пример 7

$$ log_{e}(e2)=ln(e2)=2;$$ $$ log_{e}(e)=ln(e)=1;$$ $$ log_{e}(e5)=ln(e5)=5.$$

Натуральные и десятичные логарифмы подчиняются тем же самым свойствам и правилам, что и обыкновенные логарифмы.

У логарифмов есть несколько свойств, по которым можно проводить преобразования и вычисления. Кроме этих свойств, никаких операций с логарифмами делать нельзя.

Законы и акты
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: